Abstract

Attributed to the development of deep networks and abundant data, automatic face recognition (FR) has quickly reached human-level capacity in the past few years. However, the FR problem is not perfectly solved in case of large poses and uncontrolled occlusions. In this paper, we propose a novel bypass enhanced representation learning (BERL) method to improve face recognition under unconstrained scenarios. The proposed method integrates self-supervised learning and supervised learning together by attaching two auxiliary bypasses, a 3D reconstruction bypass and a blind inpainting bypass, to assist robust feature learning for face recognition. Among them, the 3D reconstruction bypass enforces the face recognition network to encode pose independent 3D facial information, which enhances the robustness to various poses. The blind inpainting bypass enforces the face recognition network to capture more facial context information for face inpainting, which enhances the robustness to occlusions. The whole framework is trained in end-to-end manner with two self-supervised tasks above and the classic supervised face identification task. During inference, the two auxiliary bypasses can be detached from the face recognition network, avoiding any additional computational overhead. Extensive experimental results on various face recognition benchmarks show that, without any cost of extra annotations and computations, our method outperforms state-of-the-art methods. Moreover, the learnt representations can also well generalize to other face-related downstream tasks such as the facial attribute recognition with limited labeled data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.