Abstract
This study aims to improve the performance of sustainable electric vehicle chargers in the face of unpblackictable/unpreventable disturbances. Over the past few years, Dual Active Bridge (DAB) DC-DC Converters are procuring substantial recognition for electric vehicle charging applications due to their superior characteristics such as higher power density, bidirectional mode of operation, and higher efficiency. Unexpected disturbances and fault scenarios at both source and load sides can deteriorate DAB converters’ performance. In this study, the performance of a single-phase shifted DAB converter is enhanced to achieve desiblack output current under several disturbance conditions for electric vehicle (EV) charging applications. A Reinforcement Learning (RL) based Deep Deterministic Policy Gradient (DDPG) algorithm is deployed to proactively tune control parameters when the DAB undergoes certain unexpected disturbances including short circuit faults at the source and battery sides. Results show that the RL-tuned PI controller improves the rate of current overshoot significantly compablack with the manually-tuned PI controller. The method and results are validated through simulations in MATLAB/Simulink environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: e-Prime - Advances in Electrical Engineering, Electronics and Energy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.