Abstract

Electrically charged food-grade biopolymers can be used to form multilayer coatings around the lipid droplets in oil-in-water emulsions using a sequential layer-by-layer electrostatic deposition approach. In principle, this approach can be used to improve the stability and enhance the functionality of food emulsions. In this study, multilayer coatings were formed from saponins, polypeptides, and polysaccharides using medium chain triglyceride (MCT) lipid droplets as templates (pH 4.0). First, an emulsion containing negatively charged lipid droplets was created using quillaja saponin (QS) as an anionic emulsifier. Second, these anionic droplets were coated with a cationic polypeptide (poly-L-lysine, PLL) to form positively-charged droplets. Finally, these cationic droplets were coated with a negatively-charged polysaccharide, either pectin (PE) or κ-carrageenan (KC), to form anionic droplets. Overall, the 1-layer emulsions had the best resistance to salt, pH, and heat, indicating that quillaja saponins were effective emulsifiers. The 2-layer emulsions had better pH-stability than the 3-layer emulsions, which tended to strongly aggregate under acidic conditions. Conversely, the 3-layer emulsions had better salt-stability than the 2-layer emulsions, which tended to aggregate strongly even at low salt levels (50–100 mM NaCl). All the emulsions were relatively stable to heating (90 °C, 30 min). Overall, our results provide useful insights into the formulation of stable multilayer emulsions from food-grade emulsifiers and biopolymers. There appears to be little advantage to using the multilayer technology to enhance the physical stability of saponin-coated lipid droplets, but there may be advantages in terms of extending their functional properties, which will be explored in future studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.