Abstract

Embedding models are crucial for various natural language processing tasks but can be limited by factors such as limited vocabulary, lack of context, and grammatical errors. This paper proposes a novel approach to improve embedding performance by leveraging Large Language Models (LLMs) to enrich and rewrite input text before the embedding process. By utilizing ChatGPT 3.5 to provide additional context, correct inaccuracies, and incorporate metadata, the proposed method aims to enhance the utility and accuracy of embedding models. The effectiveness of this approach is evaluated on three datasets: Banking77Classification, TwitterSemEval 2015, and Amazon Counter-factual Classification. The results demonstrate significant improvements over the baseline model on the TwitterSemEval 2015 dataset, with the best-performing prompt achieving an average precision based on cosine similarity score of 85.34 compared to the previous best of 81.52 on the Massive Text Embedding Benchmark (MTEB) Leaderboard. However, performance on the other two datasets i.e. Banking77Classification and Amazon Counter Factual was less impressive. The findings suggest that LLM-based text enrichment has shown promising results to improve embedding performance, particularly in certain domains. Hence, numerous limitations in the process of embedding can be avoided.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.