Abstract
ABSTRACTCoffee, a popular beverage worldwide, requires thorough quality assessment to ensure its authenticity and meet consumer demands. Traditional methods in the industry are often subjective, expensive, and time‐consuming. This study used a compact, portable electronic nose (e‐nose) with machine learning models to classify and distinguish between civet and non‐civet roasted beans. The polynomial feature extraction method was used to extract important parameters from the sensor response and improve system performance. Classification models like linear discriminant analysis (LDA), logistic regression (LR), quadratic discriminant analysis (QDA), and support vector machines (SVM) were applied to classify the samples. Among these, the LDA model with polynomial features yielded the highest validation and test accuracies, with values of 0.89 ± 0.04 and 0.93, respectively. This was higher than the statistical feature methods, which obtained validation and test accuracies of 0.80 ± 0.07 and 0.87, respectively. The acquired e‐nose results were correlated with compound concentrations in roasted coffee beans measured by gas chromatography–mass spectrometry (GC–MS). These findings demonstrate the e‐nose system's promising potential to effectively distinguish civet from non‐civet roasted coffee beans based on their aroma profiles using polynomial feature extraction methods.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.