Abstract

To optimize the electromagnetic wave performance for absorbers, it is crucial to implement rational structural designs and integrate multiple loss modes in a coordinated manner. Here, three-dimensional (3D) porous macroscopic coral-like Co/CoO/reduced graphene oxide aerogels (Co/CoO/RGO), are successfully fabricated by an ice-templated freeze-drying and thermal reduction techniques, and their pore structures, involving aperture and total pore volume, are availably regulated by manipulating the water addition. The electromagnetic parameters and electromagnetic wave performance appear strong response toward the variation of pore structure. By controlling the pore structure, these parameters can be efficaciously tunned, thus manipulating the performance. The optimized absorption performance is obtained when the water addition is 1 ml, the minimum reflection loss reaches to −61.8 dB and the effective bandwidth is 4.2 GHz. Such good performance is inseparable with the 3D crosslinked conductive framework, the hybrid of magnetic and dielectric units, numerous heterointerfaces and countless pores walls in aerogels, which brings multiple electromagnetic wave loss mechanism. Moreover, it is very important that Co/CoO/RGO aerogels also integrate good hydrophobicity and heat insulation properties, allowing their application in harsh conditions. This work shows the potential of pore structural control engineering for producing multifunctional aerogels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.