Abstract

Stack pressure application in solid-state batteries (SSBs) is crucial for achieving high-energy density by promoting interfacial contact. Fluctuations in stack pressure at the MPa-scale can result in mechanical fatigue, leading to the degradation of materials within a fixed-volume cell casing. Thus, it is essential to regulate these stack pressure variations during cycling. In this study, we successfully stabilize the evolution of stack pressure at the hundred kPa-scale by incorporating compression springs into the conventional SSB assembly. This kPa-level stabilization is achieved by converting elastic potential energy into spring deformation. We investigate these mechanical responses by correlating them with stack pressure and cell thickness measurements in a variable volume cell. Furthermore, accommodating volume changes results in more than 98 % retention of the highest stack pressure retention. These findings can significantly contribute to advancements in cell assembly processes critical for scaling up SSB modules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.