Abstract

Chloramphenicol (CAP) is known to be harmful to the environment and food, posing a threat to human health. Developing an effective and convenient method for detecting CAP is crucial. An electrochemiluminescence (ECL) biosensor has been designed for sensitive detection of CAP. The improved ECL behavior was attributed to the synergistic effect of N and P co-doped Ti3C2-Apt1 (N, P-Ti3C2-Apt1) nanoprobes and high intensity focused ultrasound (HIFU) pretreatment. The doping of N and P could improve the electrochemical performance of Ti3C2. HIFU pretreatment generated more reactive oxygen species (ROS) in the luminol-O2 system. N, P-Ti3C2 could aggregate and catalyze ROS, causing an increase in ECL intensity. Furthermore, N, P-Ti3C2 as a carrier loaded more aptamer, which could recognize CAP with high specificity. The detection limit was 0.01 ng/mL. This biosensor has been successfully applied in milk and environmental water samples, highlighting its potential in the field of food and environmental analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call