Abstract

Chemical manipulation of surface functional groups on two‐dimensional transition‐metal carbides and/or nitrides (MXenes) provides a wide range of design and application prospects. However, achieving rapid targeted modification of surface groups remains a significant challenge. Herein, we propose a general strategy to swiftly shear and customize surface groups on Ti3C2Tx‐MXene via the flash Joule heating (FJH) reaction within 1 s. Successfully, MXenes with 9 target terminations, including VII A (F, Cl, Br, or I), VI A (O, S, or Se), and V A (N or P), either single or multiple, are synthesized, with a surface content of up to about 76%. The impact of these terminations is systematically analyzed on electrochemical performance, demonstrating that VI A and V A terminations have higher electrochemical activity than VII A. Particularly, N‐, S‐, and O‐terminated MXenes exhibit enhanced specific capacities and undecayed cycling performance. These findings offer valuable insights for the surface engineering design and performance optimization of functional materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call