Abstract

This study focused on the ultrasound-assisted transesterification of simulated low-quality feedstocks using a low-cost liquid lipase Eversa® Transform 2.0 (ET2). Enzyme characterization was also performed to investigate the effect of ultrasound parameters on enzyme structure. The optimal ultrasound parameters, 40 % amplitude, and 5 % duty cycle effectively enhanced the reaction rate compared to the conventional stirring method while retaining 95 % of the enzyme activity. Analysis of circular dichroism (CD) spectra revealed the preservation of the secondary structure of ET2 under the optimal ultrasound intensities, while fluorescence spectra indicated a slight change in its tertiary structure. The implementation of a two-stage methanol dosing strategy in the ultrasound-assisted reaction effectively mitigated lipase inhibition, yielding a remarkable fatty acid methyl ester (FAME) content of 92.2 % achieved within a 12-h reaction time. Notable, this high FAME content was achieved with only a 4:1 methanol-to-oil molar ratio and a 0.5 wt% enzyme concentration. Under these optimized conditions, the ultrasound-assisted reaction also demonstrated a 15 % improvement in the final FAME content compared to the conventional stirring method. These promising results hold significant potential for advancing the field of biodiesel production via ultrasound technology, contributing substantively to sustainable energy sources.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.