Abstract

The performance of dye-sensitized solar cells (DSSCs) depends on the ionic conductivity and flexibility of electrolyte. Gel polymer electrolytes (GPEs) consisting poly(propylene) carbonate (PPC) incorporated with double salts (i.e. calcium iodide (CaI2) and tetrabutylammonium iodide (TBAI)) were prepared. X-ray diffraction (XRD) authenticated that the crystallinity of PPC is mitigated after incorporation of different concentrations of CaI2 and TBAI, which is favourable for ion transportation. Fourier-transform infrared spectroscopy (FTIR) unveils the occurrence of complexation between PPC and the double salts. GPE containing 10% of CaI2 and 30% of TBAI exhibits the highest ionic conductivity (1.838 mS cm−1) with the activation energy of 0.156 eV. The fabricated DSSC employing the optimized GPE exhibits the energy conversion efficiency (η) of 5.49%, short circuit current density (Jsc) of 16.6 mA cm−2, open circuit voltage (Voc) of 0.568 V and fill factor (FF) of 54%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call