Abstract

Coal-derived carbon nanomaterials possess numerous superior features compared to other classic carbon, such as readily accessible surfaces, tunable pore structure, and facile and precise surface functionalization. Therefore, the controllable preparation of coal-derived carbon nanomaterials is anticipated to be of great significance for the performance improvement and commercialization process of carbon-based perovskite solar cells (C-PSCs). In this study, we successfully synthesized highly stable and commercially valuable graphene oxide (GO) and reduced graphene oxide (rGO) utilizing coal. Compared to traditional methods and commercial graphene, the chemical oxidation and pyrolysis process used in this study is mild and simple, offering the advantages of controlled composition and the absence of other impurities. GO or rGO was incorporated into the top of the SnO2 electron transport layer (ETL) of C-PSCs. Under optimized conditions and ultraviolet-ozone (UVO) irradiation, the ultimate power conversion efficiency (PCE) increased from the unmodified 12.4 to 14.04% (based on rGO) and 15.18% (based on GO), representing improvements of 22 and 31%, respectively. The improved photovoltaic performance is mainly owing to enhanced charge transport capabilities, denser interfacial contacts, improved carrier separation properties, increased conductivity, and abundance of hydrophilic functional groups in GO, which can form more stable hydrogen bonds with SnO2. After being stored at room temperature and ambient humidity for 30 days, the modified, unpacked devices retained 87% of the highest power conversion efficiency (PCE). This study introduces a practical and manageable method to enhance the performance of C-PSCs by using functional carbon nanomaterials derived from coal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.