Abstract

Natural organic matter (NOM) and iron oxides have been proved to be crucial factors controlling the behaviors of nanoparticles in heterogenous environment. Here, we conducted experimental and modeling study on the transport of titanium dioxide nanoparticles (TiO2 NPs) in iron oxide-coated quartz in the presence of NOM under acidic conditions. Results showed the antagonistic effects of iron oxides and NOM on TiO2 NPs mobility. The inhibition of iron oxides coated on quartz was crystal form-dependent other than quantity-dependent. Amorphous ferric oxyhydroxide with higher specific surface area brought more positive charge and favorable deposition sites onto quartz, and induced more retention of nanoparticles than two crystalline iron oxides, goethite and hematite. Dissolved organic matter (DOM) facilitated TiO2 NPs transport in iron oxide-coated quartz. In comparation with the limited enhancing effects of DOM, the NOM coatings on media surface partially or largely offset the inhibition of goethite on nanoparticles mobility through direct occupation of attachment sites and sites screening due to the steric repulsion of the macromolecules. Owing to the higher steric hindrance, humic acid, both in dissolved and media surface-bound states, exerted stronger facilitating effects on TiO2 NPs mobility relative to fulvic acid.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call