Abstract

Aromatic hydrocarbons are one of the major precursors of atmospheric brown carbon (BrC) and both abundantly co-exist with NOx in the urban atmosphere especially in winter haze period. However, the impact of NOx on the formation of BrC derived from aromatic hydrocarbons is still not fully understood. In this study, the yield and light absorption of secondary organic aerosols (SOA) from toluene photooxidation under various nitrogen oxides (NO2) levels were investigated by using a 5 m3 photooxidation smog chamber. A trend of increase at first and then decrease in the SOA yield with an increasing NO2 concentration was observed. The acid-catalyzed heterogeneous reactions lead to the increase of SOA yield in the low-NO2 regime. The formation of low-volatility species might be suppressed at high-NO2 conditions is responsible for the decreased SOA yield. In contrast, light absorption and mass absorption coefficient (MAC) of the toluene-derived SOA continuously increased with the increasing NO2 concentrations. HR-ToF-AMS results showed that nitrogen-containing organic compounds (NOCs) are the main species that lead to the increase of the SOA light absorption. The ratio of CHN family to the total NOCs, which are derived from the nitro compounds, also increased dominantly with the increasing NO2 levels and accounted for more than half of the total NOCs when the NO2 concentration increased to 495 ppbv, indicating that nitro compounds rather than organic nitrates are the major light-absorbing species and preferably formed in the toluene oxidation process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call