Abstract

The inability to utilize near infrared (NIR) light has posed a stringent limitation for the efficiencies of most single-junction photovoltaic cells such as dye-sensitized solar cells (DSSCs). Here, we describe a strategy to alleviate the NIR light harvesting problem by upconverting non-responsive NIR light in a broad spectral range (over 190 nm, 670-860 nm) to narrow solar-cell-responsive visible emissions through incorporated dye-sensitized upconversion nanoparticles (DSUCNPs). Unlike typically reported UCNPs with narrow and low NIR absorption, the organic dyes (IR783) anchored on the DSUCNP surface were able to harvest NIR photons broadly and efficiently, and then transfer the harvested energy to the inorganic UCNPs (typically reported), entailing an efficient visible upconversion. We show that the incorporation of DSUCNPs into the TiO2 photoanode of a DSSC is able to elevate its efficiency from 7.573% to 8.568%, enhancing the power conversion efficiency by about 13.1%. We quantified that among the relative efficiency increase, 7.1% arose from the contribution of broad-band upconversion in DSUCNPs (about ∼3.4 times higher than the highest previously reported value of ∼2.1%), and 6.0% mainly from the scattering effect of DSUCNPs. Our strategy has immediate implications for the use of DSUCNPs to improve the performance of other types of photovoltaic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.