Abstract

In this study, we present our successful fabrication of commercial-grade pure aluminum anode foil (99.5%, 2NAl) with an ultrafine-grained (UFG) microstructure and high hardness, achieved through cold rolling. Under identical rolling conditions, a coarse-grained microstructure with a low hardness was attained from the high-purity Al foil (99.99%, 4NAl). The UFG 2NAl foil exhibited enhanced lithium-ion diffusivity and reduced nucleation and activation overpotentials for forming the β-LiAl phase compared to the 4NAl foil. The high-density grain boundaries in the UFG 2NAl foil facilitated the rapid formation of a uniform β-LiAl phase layer on its surface, thereby mitigating mechanical damage within the β-LiAl phase layer caused by volume changes during the lithiation and delithiation processes. The high hardness of the UFG 2NAl sample effectively prevented macroscopic plastic deformation during cycling, thus preserving the integrity of the β-LiAl phase layer and inhibiting the formation of cracks within the unreacted Al matrix. The collective advantages of reduced overpotential, enhanced Li-ion diffusivity, and high resistance to mechanical damage and plastic deformation in UFG 2NAl contribute to its superior durability and capacity retention compared to the high-purity Al in electrochemical cycling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call