Abstract
We present the dynamic study of optical trapping of fluorescent molecules using high-density gold nanodisk arrays. The gold nanodisks were fabricated by electron beam lithography with a diameter of 500 nm and a period of 1 μm. Dark-field illumination showed ∼15 times enhancement of fluorescence near edges of nanodisks. Such enhanced near-field generated an optical trapping force of ∼10 fN under 3.58 × 103 W/m2 illumination intensity as calculated from the Brownian motions of 590 nm polystyrene beads. Kinetic observation of thiolated DNA modified with Cy5 dye showed different binding rates of DNA under different illumination intensity. The binding rate increased from 2.14 × 103 s−1 (I = 0.7 × 103 W/m2) to 1.15 × 105 s−1 (I = 3.58 × 103 W/m2). Both enhanced fluorescence and binding rate indicate that gold nanodisks efficiently improve both detection limit and interaction time for microarrays.
Highlights
We present the dynamic study of optical trapping of fluorescent molecules using high-density gold nanodisk arrays
Kinetic observation of thiolated DNA modified with Cy5 dye showed different binding rates of DNA under different illumination intensity
Both enhanced fluorescence and binding rate indicate that gold nanodisks efficiently improve both detection limit and interaction time for microarrays
Summary
Enhancing DNA binding rate using optical trapping of high-density gold nanodisks Dark-field illumination showed ∼15 times enhancement of fluorescence near edges of nanodisks. Such enhanced near-field generated an optical trapping force of ∼10 fN under 3.58 × 103 W/m2 illumination intensity as calculated from the Brownian motions of 590 nm polystyrene beads.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.