Abstract

In this research, we develop a data-driven disruption predictor based on Bayesian deep probabilistic learning, capable of predicting disruptions and modeling uncertainty in KSTAR. Unlike conventional neural networks within a frequentist approach, Bayesian neural networks can quantify the uncertainty associated with their predictions, thereby enhancing the precision of disruption prediction by mitigating false alarm rates through uncertainty thresholding. Leveraging 0D plasma parameters from EFIT and diagnostic data, a temporal convolutional network adept at handling multi-time scale data was utilized. The proposed framework demonstrates proficiency in predicting disruptions, substantiating its effectiveness through successful applications to KSTAR experimental data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call