Abstract

ABSTRACT Researchers are exploring for new alternatives to fossil fuels to improve the performance and reduce the pollution of internal combustion engines. This is because fossil fuels are becoming more expensive and pollution levels are going up. The purpose of this research was to find a way to replace standard diesel with blended fuels. This was done by putting mixtures of diesel, biodiesel, methanol, and nitromethane (CH3NO2) into an engine and looking at how they burned, how well they worked, and how much pollution they made. The fuels that were tested were diesel, B10 (90% D and 10% biodiesel), B10NM1 (diesel 87%, biodiesel 10%, methanol 2%, CH3NO2 1%), B10NM2 (diesel 86%, biodiesel 10%, methanol 2%, CH3NO2 2%), and B10NM3 (diesel 85%, biodiesel 10%, methanol 2%, CH3NO2 3%). Experiments were done on a single-cylinder, four-stroke DI diesel engine using blends of diesel, biodiesel, and nitro methane to find the ideal blending ratio and engine operating conditions for enhancing performance and minimizing emissions. Under normal engine conditions, the B10NM3 blend (made up of 85% diesel, 10% biodiesel, 2% methanol, and 3% nitro methane) gave the highest performance and the least amount of pollution. Compared to pure B10, the B10NM1 mix decreased emissions (HC by 8.1% and CO by 13.6%) while raising BTE by 15.6%, NOx by 7.2%, and cylinder pressure by 2.2%. On the other hand, NOx emissions went up by 7.2%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call