Abstract

Compared with traditional deflagration-based systems, detonation-based propulsion systems offer significant potential benefits in terms of efficiency and specific impulses in the field of advanced aerospace propulsion technologies. However, the successful implementation of these technologies faces several key challenges, particularly in achieving reliable, stable, and robust detonation wave propagation. This paper examines the use of Jet in Cross-Flow (JICF) as a means of enhancing detonation propulsion performance. The fundamental principles of the three main detonation propulsion systems are first outlined, along with the primary techniques employed to stimulate detonation wave propagation, such as the use of solid and fluidic obstacles. This paper provides an in-depth analysis of how JICF can be leveraged to improve the deflagration-to-detonation transition (DDT) and overall detonation propulsion. The influences of key JICF parameters, including the jet delay time, pressure, temperature, nozzle width, and location, are investigated in detail. The underlying flow physics and mechanisms by which the JICF enhances detonation are also explored, encompassing the formation of precursor shock waves, flow instabilities, flame evolution dynamics, etc. Finally, the practical application of the JICF in different detonation engines is discussed, highlighting the benefits it can provide in terms of improved operation, efficiency, and reliability. The current research challenges and future research directions for the application of JICF in detonation propulsion are discussed. The results present a thorough and up-to-date assessment of the state-of-the-art in utilizing JICF to advance the development of high-performance detonation-based propulsion systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.