Abstract

This study proposes and evaluates a novel data-driven spatial filtering approach for enhancing steady-state visual evoked potentials (SSVEPs) detection toward a high-speed brain-computer interface (BCI) speller. Task-related component analysis (TRCA), which can enhance reproducibility of SSVEPs across multiple trials, was employed to improve the signal-to-noise ratio (SNR) of SSVEP signals by removing background electroencephalographic (EEG) activities. An ensemble method was further developed to integrate TRCA filters corresponding to multiple stimulation frequencies. This study conducted a comparison of BCI performance between the proposed TRCA-based method and an extended canonical correlation analysis (CCA)-based method using a 40-class SSVEP dataset recorded from 12 subjects. An online BCI speller was further implemented using a cue-guided target selection task with 20 subjects and a free-spelling task with 10 of the subjects. The offline comparison results indicate that the proposed TRCA-based approach can significantly improve the classification accuracy compared with the extended CCA-based method. Furthermore, the online BCI speller achieved averaged information transfer rates (ITRs) of 325.33 ± 38.17 bits/min with the cue-guided task and 198.67 ± 50.48 bits/min with the free-spelling task. This study validated the efficiency of the proposed TRCA-based method in implementing a high-speed SSVEP-based BCI. The high-speed SSVEP-based BCIs using the TRCA method have great potential for various applications in communication and control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.