Abstract

A robust adaptive predictor is proposed to solve the time-varying and delay control problem of an overhead crane system with a stereo-vision servo. The predictor is based on the use of a recurrent neural network (RNN) with tapped delays, and is used to supply the real-time signal of the swing angle. There are two types of discrete-time controllers under investigation, i.e., the proportional-integral-derivative (PID) controller and the sliding controller. Firstly, a design principle of the neural predictor is developed to guarantee the convergence of its swing angle estimation. Then, an improved version of the particle swarm optimization algorithm, the parallel particle swarm optimization (PPSO) method is used to optimize the control parameters of these two types of controllers. Finally, a homemade overhead crane system equipped with the Kinect sensor for the visual servo is used to verify the proposed scheme. Experimental results demonstrate the effectiveness of the approach, which also show the parameter convergence in the predictor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.