Abstract
A multi-agent data-analytics-based approach to ubiquitous healthcare monitoring is presented in this paper. The proposed architecture gathers a patient’s vital data using wireless body area networks, and the transmitted information is separated into binary component parts and divided into related dataset categories using several classification techniques. A probabilistic procedure is then used that applies a normal (Gaussian) distribution to the analysis of new medical entries in order to assess the gravity of the anomalies detected. Finally, a data examination is carried out to gain insight. The results of the model and simulation show that the proposed architecture is highly efficient in applying smart technologies to a healthcare system, as an example of a research direction involving the Internet of Things, and offers a data platform that can be used for both medical decision making and the patient’s wellbeing and satisfaction with their medical treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Applied Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.