Abstract

Many dark matter interaction types lead to annihilation processes which suffer from p-wave suppression or helicity suppression, rendering them subdominant to unsuppressed s-wave processes. We demonstrate that the natural inclusion of dark initial state radiation can open an unsuppressed s-wave annihilation channel, and thus provide the dominant dark matter annihilation process for particular interaction types. We illustrate this effect with the bremsstrahlung of a dark spin-0 or dark spin-1 particle from fermionic dark matter, $\overline{\chi}\chi\rightarrow \overline{f}f\phi$ or $\overline{f}fZ'$. The dark initial state radiation process, despite having a 3-body final state, proceeds at the same order in the new physics scale $\Lambda$ as the annihilation to the 2-body final state $\overline{\chi}\chi\rightarrow \overline{f}f$. This is lower order in $\Lambda$ than the well-studied lifting of helicity suppression via Standard Model final state radiation, or virtual internal bremsstrahlung. This dark bremsstrahlung process should influence LHC and indirect detection searches for dark matter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.