Abstract

Lithium-rich manganese-based materials (LRM) are regarded as promising next-generation commercial cathodes due to their exceptionally high capacities and working voltages. However, lithium-rich manganese-based materials are plagued with inferior cyclic stability and voltage fading, which greatly stifled their commercial transitions. In this work, the dopant F and Mg uniformly distributed lithium-rich manganese-based cathode material is firstly prepared via an in-situ co-precipitation and high-temperature calcination method. The F and Mg co-doped sample can demonstrate excellent cyclic stability (88.56%, after 100 cycles at 1 C), and higher initial discharge and coulombic efficiency by reducing the transition metal (TM) loss and structure stabilization. Thus, this work presents crucial findings in the development of lithium-rich manganese-based materials, which provides a novel doping route and a vital method of cation-anion co-doping to prepare high-performing cathodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.