Abstract

The world is expanding digitally at an ever-accelerating rate. As networks become larger and data becomes more complex, cyber security challenges are growing rapidly. To combat cyber attacks, machine learning (ML) and other artificial intelligence (AI) solutions should be utilised to design and build robust security solutions. With the explosion in the number of new techniques and frameworks in the ML/AI space, it is tricky for organisations to identify the best frameworks and approaches to build robust ML/AI solutions. In this article, an empirical analysis has been performed on various ML/AI frameworks to determine the performance and effectiveness of running ML/AI algorithms in a distributed manner.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.