Abstract

Dissimilar friction stir welding of AA5083-AA6061 alloys in different cooling environments (air, liquid nitrogen, and water) was successfully employed as an alternative method to enhance corrosion resistance and mechanical properties. The evolution of microstructure, corrosion behavior, and mechanical properties of friction stir welded joints were studied using optical microscopy (OM), electron backscattered diffraction, scanning electron microscope, electrochemical workstation, and universal testing machine. The results indicated that the width of the stir zone and grain size of heat-affected zones were reduced by the use of external cooling media. Electron backscattered diffraction results showed that the grain size in air-cooled friction stir welding, nitrogen-cooled friction stir welding and water-cooled friction stir welding were 7.6 µm, 4.5 µm, and 3.2 µm, respectively, and water-cooled friction stir welding joint developed a larger fraction of high-angle grain boundaries at stir zone. The intermetallics formed in the joints using cooling media were finer compared to that of the air-cooled samples. The corrosion behavior of the stir zone was impacted by the cooling environment while potentiodynamic polarization results revealed that the water-cooled friction stir welding joint showed excellent corrosion resistance due to the finer size of intermetallics. The minimum hardness values shifted to the stir zone in the case of nitrogen-cooled friction stir welding and water-cooled friction stir welding from the heat-affected zone location as in the air-cooled friction stir welding joint. For the joint made with water-cooled friction stir welding, maximum yield strength was obtained with a joint efficiency of 96% relative to AA5083 base material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call