Abstract

Despite the recent success of convolutional neural networks for computer vision applications, unconstrained face recognition remains a challenge. In this work, we make two contributions to the field. Firstly, we consider the problem of face recognition with partial occlusions and show how current approaches might suffer significant performance degradation when dealing with this kind of face images. We propose a simple method to find out which parts of the human face are more important to achieve a high recognition rate, and use that information during training to force a convolutional neural network to learn discriminative features from all the face regions more equally, including those that typical approaches tend to pay less attention to. We test the accuracy of the proposed method when dealing with real-life occlusions using the AR face database. Secondly, we propose a novel loss function called batch triplet loss that improves the performance of the triplet loss by adding an extra term to the loss function to cause minimisation of the standard deviation of both positive and negative scores. We show consistent improvement in the Labeled Faces in the Wild (LFW) benchmark by applying both proposed adjustments to the convolutional neural network training.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.