Abstract

The construction industry is a hazardous industry with significant injuries and fatalities. Few studies have used data-driven analysis to investigate injuries due to construction accidents. This study aims to deploy machine learning (ML) models to predict four injury types (ITs): Upper limbs, lower limbs, head/neck, and back/trunk. A total of 16,878 construction accident records in Australia were collected and fed into several ML algorithms, including fine trees, ensemble of boosted trees, xgboost, random forest, two types of support vector machines, and logistic regression. Six performance metrics of precision, recall, accuracy, F1 score, the area under the receiver operating curve (AUROC), and the area under precision recall curve (AUPRC) were used to evaluate modeling outputs. Random forest showed superior performance in predicting injury types (accuracy 79.3%; recall 78.0%; F1 score 78.5%; precision 77.1%; AUROC 0.98; and AUPRC 0.78). The critical features of injury types were analyzed using the feature importance method and accident nature and mechanism had significant impacts. The study’s findings contribute to safety enhancement by providing quantitative prediction models of injury types and subsequent development of safety controls in construction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.