Abstract

Constraint programming (CP) is a powerful technique for solving constraint satisfaction and optimization problems. In CP solvers, the variable ordering strategy used to select which variable to explore first in the solving process has a significant impact on solver effectiveness. To address this issue, we propose a novel variable ordering strategy based on supervised learning, which we evaluate in the context of job shop scheduling problems. Our learning-based methods predict the optimal solution of a problem instance and use the predicted solution to order variables for CP solvers. Unlike traditional variable ordering methods, our methods can learn from the characteristics of each problem instance and customize the variable ordering strategy accordingly, leading to improved solver performance. Our experiments demonstrate that training machine learning models is highly efficient and can achieve high accuracy. Furthermore, our learned variable ordering methods perform competitively compared to four existing methods. Finally, we showcase the benefits of integrating machine learning-based variable ordering methods with conventional domain-based approaches through tie-breaking.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call