Abstract

Gas reservoirs can be classified into dry gas reservoirs, wet gas reservoirs and Gas condensate reservoirs. In gas condensate reservoirs, the reservoir temperature lies between the critical temperature and the cri-condentherm. The gas will drop out liquid by retrograde condensation in the reservoir, when the pressure falls below the dew point. This heavy part of the gas has found many application in industry and also in daily life and by remaining in reservoir not only this valuable liquid is lost but also its accumulation will result in forming a condensate bank near the well bore region which makes a considerable reduction in well productivity. In this paper, gas injection will be studied in a gas condensate reservoir to increase the recovery factor moreover the capability of different injection gases (CO2, N2, CH4 and separator gas) will be compared through different injection schemes. The injection schemes which will be considered are: different injection rates, different injection pressures and different injection durations. We think that the response of the reservoir in different cases will be different but that injection of all of them can increase the condensate recovery. As many parameters can affect the decision of selecting the injection scheme, other than the gas and condensate recovery factor, doing an economical evaluation is inevitable to take them all into account and determine the best one. In this paper, the efficiency of different schemes of gas injection and gas recycling in condensate recovery from a gas condensate reservoir, through compositional simulation has been studied and compared. The effect of changing injection rate, injection pressure and injection duration has been investigated by three injection gases (N2, CO2, CH4) and gas recycling. The appropriate and optimum case can be selected considering the results of the simulation work and doing an economical evaluation, taking into account all the parameters such as: the price of the gas and condensate, the price of the injection gases and the cost of the facilities needed in each scheme with regard to the present level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.