Abstract

We propose a novel method to synthesize a noise- and blur-free color image sequence using near-infrared (NIR) images captured in extremely low light conditions. In extremely low light scenes, heavy noise and motion blur are simultaneously produced in the captured images. Our goal is to enhance the color image sequence of an extremely low light scene. In this paper, we augment the imaging system as well as enhancing the image synthesis scheme. We propose a novel imaging system that can simultaneously capture the red, green, blue (RGB) and the NIR images with different exposure times. An RGB image is taken with a long exposure time to acquire sufficient color information and mitigates the effects of heavy noise. By contrast, the NIR images are captured with a short exposure time to measure the structure of the scenes. Our imaging system using different exposure times allows us to ensure sufficient information to reconstruct a clear color image sequence. Using the captured image pairs, we reconstruct a latent color image sequence using an adaptive smoothness condition based on gradient and color correlations. Our experiments using both synthetic images and real image sequences show that our method outperforms other state-of-the-art methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.