Abstract

Quantum manipulation is challenging in localized-surface plasmon resonances (LSPRs) due to strong dissipations. To enhance quantum coherence, here we propose to engineer the electromagnetic environment of LSPRs by placing metallic nanoparticles (MNPs) in optical microcavities. An analytical quantum model is first built to describe the LSPR-microcavity interaction, revealing the significantly enhanced coherent radiation and the reduced incoherent dissipation. Furthermore, when a quantum emitter interacts with the LSPRs in the cavity-engineered environment, its quantum yield is enhanced over 40 times and the radiative power over one order of magnitude, compared to those in the vacuum environment. Importantly, the cavity-engineered MNP-emitter system can enter the strong coupling regime of cavity quantum electrodynamics, providing a promising platform for the study of quantum plasmonics, quantum information processing, precise sensing, and spectroscopy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.