Abstract

BackgroundCognitive control (CC) is an important prerequisite for goal-directed behaviour and efficient information processing. Impaired CC is associated with reduced prefrontal cortex activity and various mental disorders, but may be effectively tackled by transcranial direct current stimulation (tDCS)-enhanced training. However, study data are inconsistent as efficacy depends on stimulation parameters whose implementations vary widely between studies. ObjectiveWe systematically tested various tDCS parameter effects (anodal/cathodal polarity, 1/2 mA stimulation intensity, left/right prefrontal cortex hemisphere) on a six-session CC training combined with tDCS. MethodsNine groups of healthy humans (male/female) received either anodal/cathodal tDCS of 1/2 mA over the left/right PFC or sham stimulation, simultaneously with a CC training (modified adaptive Paced Auditory Serial Addition Task [PASAT]). Subjects trained thrice per week (19 min each) for two weeks. We assessed performance progress in the PASAT before, during, and after training. Using a hierarchical approach, we incrementally narrowed down on optimal stimulation parameters supporting CC. Long-term CC effects as well as transfer effects in a flanker task were assessed after the training period as well as three months later. ResultsCompared to sham stimulation, anodal but not cathodal tDCS improved performance gains. This was only valid for 1 mA stimulation intensity and particularly detected when applied to the left PFC. ConclusionsOur results confirm beneficial, non-linear effects of anodal tDCS on cognitive training in a large sample of healthy subjects. The data consolidate the basis for further development of functionally targeted tDCS, supporting cognitive control training in mental disorders and guiding further development of clinical interventions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.