Abstract

This paper introduces a novel approach to enhance the classification accuracy of hemodynamic response function (HRF) signals acquired through functional near-infrared spectroscopy (fNIRS). Leveraging a semi-supervised learning (SSL) framework alongside a filtering technique, the study preprocesses HRF data effectively before applying the SSL algorithm. Collected from the prefrontal cortex, HRF signals capture variations in oxyhemoglobin (oxyHb) and deoxyhemoglobin (deoxyHb) levels in response to odor stimuli and air state. Training the classification model on a dataset containing filtered and feature-extracted HRF signals led to significant improvements in classification accuracy. By comparing the algorithm's performance before and after employing the proposed filtering technique, the study provides compelling evidence of its effectiveness. These findings hold promise for advancing functional brain imaging research and cognitive studies, facilitating a deeper understanding of brain responses across various experimental contexts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.