Abstract

BackgroundProducing fly ash geopolymer concrete (FGPC) which can be cured by air, water, or steam instead of thermal curing without decreasing its mechanical properties will facilitate using FGPC in cast-in situ applications and precast concrete industry. Furthermore, it will decrease the consumed energy in FGPC production. This research attempts to achieve this goal by investigating the efficacy of supplementing class F FGPC with lime while using different curing processes to generate lime-fly ash geopolymer concrete (L-FGPC) that could be a feasible alternative to ordinary FGPC.MethodsThe studied variables included lime content, molarity of sodium hydroxide (NaOH), additional water content, curing type, and moisture of aggregates. The comparative criteria were setting times of fresh concrete, mechanical properties of hardened concrete, and voids ratio. SEM and X-ray diffraction tests were used to validate test results.ConclusionsSteam curing generated the best mechanical properties of L-FGPC. Using 2% lime content with steam-cured L-FGPC yielded proper setting times and the best mechanical properties. Microstructure tests revealed compact microstructure and decreased voids ratio upon using 2% lime content in L-FGPC. Increasing molarity of NaOH, decreasing additional water content, and decreasing moisture of aggregates enhanced L-FGPC’s mechanical properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.