Abstract

Circular dichroism (CD) spectroscopy, which measures the differential absorption of circularly polarized light with opposite handedness, is an important technique to detect and identify chiral molecules in chemistry, biology and life sciences. However, CD signals are normally very small due to the intrinsically weak chirality of molecules. Here we theoretically investigate the generation of chiral hotspots in silicon nanocube dimers for CD enhancement. Up to 15-fold enhancement of the global optical chirality is obtained in the dimer gap, which boosts the CD signal by one order of magnitude without reducing the dissymmetry factor. This chiral hotspot originates from the simultaneous enhancement of magnetic and electric fields and their proper spatial overlap. Our findings could lead to integrated devices for CD spectroscopy, enantioselective sensing, sorting and synthesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call