Abstract

Open-tubular immobilized enzyme microreactors (OT-IMERs) are some of the most widely used enzyme reaction devices due to the advantages of simple preparation and fast sample processing. However, the traditional approaches for OT-IMERs preparation had some defects such as limited enzyme loading amount, susceptibility to complex sample interference, and less stability. Here, we report a strategy for the preparation of highly active and stable OT-IMERs, in which the single-stranded DNA-enzyme composites were immobilized in capillaries and then encapsulated in situ in the capillaries via zeolitic imidazolate frameworks (ZIF-L). The phosphate groups of the DNA adjusted the surface potential of the enzyme to negative values, which could attract cations, such as Zn2+, to promote the formation of ZIF-L for enzyme encapsulation. Using chymotrypsin (ChT) as a model enzyme, the prepared ChT@ZIF-L-IMER has higher activity and better affinity than the free enzyme and ChT-IMER. Moreover, the thermal stability, pH stability, and organic solvent stability of ChT@ZIF-L-IMER were much higher than those of free enzyme and ChT-IMER. Furthermore, the activity of ChT@ZIF-L-IMER was much higher than that of ChT-IMER after ten consecutive reactions. To demonstrate the versatility of this preparation method, we replaced ChT with glucose oxidase (GOx). The stability of GOx@ZIF-L-IMER was also experimentally demonstrated to be superior to that of GOx and GOx-IMER. Finally, ChT@ZIF-L-IMER was used for proteolytic digestion analysis. The results showed that ChT@ZIF-L-IMER had a short digestion time and high digestive efficiency compared with the free enzyme. The present study broadened the synthesis method of OT-IMERs, effectively integrating the advantages of metal-organic frameworks and IMER, and the prepared OT-IMERs significantly improved enzyme stability. All of the results indicated that the IMER prepared by this method had a broad application prospect in capillary electrophoresis-based high-performance enzyme analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.