Abstract

The rising adoption of agricultural technologies such as the Internet of Things (IoT) or “smart farming” aims to boost crop production in terms of both quantity and quality. This study compares the benefits of a smart farm employing an IoT-based hydroponic system with those of a conventional hydroponic farm, using Chinese cabbage (Brassica pekinensis L.) as the experimental crop. Our primary objective was to automate environmental monitoring, achieving pH level and electrical conductivity (EC) maintenance through smartphone or computer interfaces for nutrient and acid–base solution adjustments. Additionally, we evaluated plant growth and crop quality, finding superior results with the smart hydroponic system. On average, there were substantial increases in various parameters, including total fresh weight (27.14%), total dry weight (48.90%), plant height (11.14%), stem diameter (32.89%), leaf area (94.30%), leaf width (32.36%), leaf length (38.12%), and chlorophyll content (22.73%). Nitrate accumulation in the edible parts of Chinese cabbage remained within safe limits for both systems, reflecting careful nutrient management. These findings highlight the potential of IoT-based technology in enhancing productivity and quality in hydroponic farming, marking a significant step towards revolutionizing traditional agricultural practices for more efficient crop production systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.