Abstract
The seeding of cells onto biocompatible scaffolds is a determinant step in the attainment of functional properties of engineered tissues. Efficient, fast and spatially uniform cell seeding can improve the clinical potential of engineered tissue templates. One way to approach these cell seeding requirements is through bioreactor design. In the present study, bovine chondrocytes were seeded (2.5, 5.0 or 10.0 million cells per scaffold) onto polyglycolic acid scaffolds within the hydrodynamic environments of wavy-walled and spinner flask bioreactors. Previous characterizations of the hydrodynamic environment in the vicinity of constructs cultivated in these bioreactors suggested decreased flow-induced shear stress as well as increased recirculation and magnitude of the axial fluid velocities in the wavy-walled bioreactor. Here we report more efficient and spatially uniform cell seeding in the wavy-walled bioreactor, and at intermediate initial cell densities (5 million cells per scaffold). This study constitutes an important step towards the achievement of functional tissue-engineered implants by (i) increasing our understanding of the influence of hydrodynamic parameters on the efficiency and spatial distribution of cell attachment to scaffolds and the production of extracellular matrix and (ii) introducing a comprehensive approach to the investigation of the effects of bioprocessing conditions on tissue morphology and composition.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.