Abstract
Herein, a Fenton-like catalyst with hierarchical porous structure for the degradation of azo dye with no illumination is reported. Selective laser melting (SLM) fabrication method and electrochemical dealloying are used to enhance degradation efficiency. Even in the absence of light, the degradation efficiency can reach 0.062 (k, reaction kinetic constant) and the durability of catalysts is good. Various properties of the SLM-produced porous metallic glass (SPMG) catalysis, such as the amorphous phase fraction and relaxation, which not only affect the degradation efficiency of the catalyst, but also the dealloying process of the catalyst. To investigate this issue, a series of SLM experiments and electrochemical experiments were performed. The result showed that crystallization occurs during electrochemical dealloying, and more pronounced ligaments and less ‘Grain Region’ on the surface of high initial amorphous fraction SPMG than the one of low initial amorphous fracion, indicating that the structure of the precursor alloy affects the final formation of the nano-porous structure. Subsequently, more pronounced ligaments and less ‘Grain Region’ result in greater catalytic. However, the ‘Grain Region’ in SPMG with a low initial amorphous fraction is not decrease and its azo catalytic ability deteriorates even when electrochemical dealloying was extended to 6 h.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.