Abstract

In the native articular cartilage microenvironment, chondrocytes are constantly subjected to dynamic physical stimuli that maintains tissue homeostasis. They produce extra cellular matrix (ECM) components such as collagens (type II mainly, 50-75%), proteoglycans (10-30%) and other type of proteins1 . While collagen offers a large resistance in tension, proteoglycans are the responsible of the viscoelastic response under compression due to the negative charge they confer to the ECM allowing it to entrap a large amount of interstitial fluid. In pathologic states (e.g. osteoarthritis), this ECM is degenerated and the negative charge becomes unbalanced, losing the chondroprotective properties and resulting on an overloaded chondrocytes that further degenerate the matrix.Low-Intensity Pulsed Ultrasound Stimulation (LIPUS) has been used to generate acoustic (pressure) waves that create bubbles that collapse with cells, inducing a stimulus that can modulate cell response2. This mechanical stimulation promotes the expression of type II collagen, type X collagen, aggrecan and TGF-β, appearing as a great strategy to regenerate cartilage. However, current strategies make use of extrinsic forces to stimulate cartilage formation overlooking the physico-chemical properties of the degenerated cartilage, resulting in an excessive load-transfer to chondrocytes and the consequent hypertrophy and degeneration.Here, interpenetrated networks (IPNs) with different compositions were created using methacrylated gelatin (GelMA), to mimic the collagen, and alginate functionalized with tyramine (Alg-tyr) to mimic glycosaminoglycans and to introduce a negative charge in the model. Within the matrix chondrocytes where encapsulated and stimulated under different conditions to identify the ultrasound parameters that enhance tissue formation. Samples with and without stimulation were compared analysing the expression and deposition of collagen II, aggrecan, collagen X and TGF-β. The results suggested that the chondrogenic marker expression of the samples stimulated for 10 minutes per day for 28 days, was two times higher overall in all of the cases, which was correlated to the tissue formation detected.Acknowledgments: The authors would like to thank the Basque Government for the “Predoctoral Training Program for Non-Doctoral Research Staff 2021-2022” (Grant ref.: PRE_2021_1_0403). This work was supported by the RETOS grant PID2020-114901RA-I00 of the Ministry of Science and Innovation (MICINN).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call