Abstract
This paper presents a novel framework that integrates Conditional Generative Adversarial Networks (CGANs) and TimeGAN to generate synthetic Building-Integrated Photovoltaic (BIPV) power data, addressing the challenge of data scarcity in this domain. By incorporating time-related attributes as conditioning information, our method ensures the preservation of chronological order and enhances data fidelity. A tailored learning scheme is implemented to capture the unique characteristics of solar power generation, particularly during sunrise and sunset. Comprehensive evaluations demonstrate the framework’s effectiveness in generating high-quality synthetic data, evidenced by a 79.58% improvement in the discriminative score and a 13.46% improvement in the predictive score compared to TimeGAN. Moreover, integrating the synthetic data into forecasting models resulted in up to 23.56% improvement in mean absolute error (MAE) for BIPV power generation predictions. These results highlight the potential of our framework to enhance prediction accuracy and optimize data utilization in renewable energy applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.