Abstract

The combination of bone marrow-derived mesenchymal stem cells (BMSCs) and biological scaffolds has been demonstrated to be a promising strategy for bone regeneration. However, this method does not result in satisfactory bone regeneration, because the BMSCs are dispersed in the biological scaffolds. The current study developed a new bone regeneration system, which combines synthetic porous three-dimensional scaffolds of β-TCP/COL-I composite with cultured osteogenic sheets of BMSCs. Activity of alkaline phosphatase (ALP), a marker of bone regeneration, was assayed in vitro using enzyme-linked immunosorbent assays and quantitative real-time polymerase chain reaction. In vivo bone regeneration was assayed in male nude mice. The study samples were BMSC sheet, scaffold/scattered BMSCs, scaffold/BMSC sheet, and scaffold alone. The samples were implanted dorsally in the mice. In vitro analysis showed that β-TCP/COL-I scaffold combined with BMSC sheets significantly upregulated both gene expression and protein levels of ALP, osteocalcin, and osteopontin. Histological and micro-computed tomography showed that the only implants that demonstrated new bone formation after 4 weeks were scaffold/BMSC sheet implants. These results underscore the crucial requirement of a synergistic effect of β-TCP/COL-I scaffolds and BMSC sheets. This could be a promising novel strategy for bone tissue engineering. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 2037-2045, 2018.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.