Abstract

With Bitcoin being universally recognized as the most popular cryptocurrency, more Bitcoin transactions are expected to be populated to the Bitcoin blockchain system. As a result, many transactions can encounter different confirmation delays. Concerned about this, it becomes vital to help a user understand (if possible) how long it may take for a transaction to be confirmed in the Bitcoin blockchain. In this work, we address the issue of predicting confirmation time within a block interval rather than pinpointing a specific timestamp. After dividing the future into a set of block intervals (i.e., classes), the prediction of a transaction’s confirmation is treated as a classification problem. To solve it, we propose a framework, Hybrid Confirmation Time Estimation Network (Hybrid-CTEN), based on neural networks and XGBoost to predict transaction confirmation time in the Bitcoin blockchain system using three different sources of information: historical transactions in the blockchain, unconfirmed transactions in the mempool, as well as the estimated transaction itself. Finally, experiments on real-world blockchain data demonstrate that, other than XGBoost excelling in the binary classification case (to predict whether a transaction will be confirmed in the next generated block), our proposed framework Hybrid-CTEN outperforms state-of-the-art methods on precision, recall and f1-score on all the multiclass classification cases (4-class, 6-class and 8-class) to predict in which future block interval a transaction will be confirmed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call