Abstract
This study introduced two deep eutectic solvents, ChCl/oxalic acid (CO) and ChCl/ethylene glycol (CE), into a 34-day co-composting process of distillery sludge and distiller's grains waste to address challenges related to NH3 emissions. The addition of DES increased dissolved organic carbon by 68% to 92%, offering more utilizable carbon for microorganisms. SYTO9/PI staining and enzyme activity tests showed the CE group had higher bacterial activity and metabolic levels during the thermophilic phase than the control. Bacterial community analysis revealed that early dominance of Lactobacillus and Lysinibacillus in CE accelerated the onset of the thermophilic phase, reduced pile pH, and significantly decreased urease production by reducing Ureibacillus. Consequently, CE treatment substantially dropped NH3 emissions by 73% and nitrogen loss by 54%. Besides, CE fostered a more abundant functional microbial community during the cooling and maturation phases, enhancing deep degradation and humification of organic matter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.