Abstract
AbstractFlexible glass with high bending strength is a remarkable component of flexible electronic displays. However, as a brittle material, its bending properties often do not meet requirements of application. To address this challenge, the application of chemical strengthening stands out as a viable approach to significantly bolster scratch resistance and bending strength in flexible glass. This study focuses on a conventional one‐step chemical strengthening method, employing molten potassium nitrate, to reinforce ultrathin aluminosilicate glass produced through the secondary down‐drawing thermoforming process. Effects of ion‐exchange temperature and time on mechanical properties of strengthened 110 µm flexible glass were investigated, and moreover, properties of strengthened ultrathin flexible glass with various thicknesses were compared. The results indicate that, after chemical strengthening at 380°C for 1 h, the compressive stress (CS) of 110 µm glass reaches 864.60 MPa, and the depth of layer is 15.86 µm, at which time the glass has the best bending performance and scratch resistance, and half of the faceplate spacing during glass breakage can be enhanced from 38.02 ± 2.7 to 8.40 ± 0.62 mm. For ultrathin flexible glass from 40 to 110 µm, after treatment at 380°C for 1 h, the CS of thick glass is higher than that of thin glass, and the enhancement of bending performance is better.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.