Abstract
Poor aspect profiles of plasmonic lithography patterns are suffering from evanescent waves' scattering loss in metal films and decaying exposure in photoresist. To address this issue, we experimentally report plasmonic cavity lens to enhance aspect profile and resolution of plasmonic lithography. The profile depth of half-pitch (hp) 32 nm resist patterns is experimentally improved up to 23 nm, exceeding in the reported sub-10 nm photoresist depth. The resist patterns are then transferred to bottom resist patterns with 80 nm depth using hard-mask technology and etching steps. The resolution of plasmonic cavity lens up to hp 22 nm is experimentally demonstrated. The enhancement of the aspect profile and resolution is mainly attributed to evanescent waves amplifying from the bottom silver layer and scattering loss reduction with smooth silver films in plasmonic cavity lens. Further, theoretical near-field exposure model is utilized to evaluate aspect profile with plasmonic cavity lens and well illustrates the experimental results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.