Abstract

AbstractApoptosis is the natural programmed cell death process, which is responsible for abnormal cell clearance. However, many cancer cells develop various mechanisms to escape apoptosis through interrupting apoptosome assembly, which is a key step to initiate apoptosis. This promotes tumorigenesis and drug resistance, and thus, poses a great challenge in cancer treatment. Herein, a biomimetic lipid nanocarrier mimicking mitochondrial Cytochrome C (Cyt C) binding is developed. Cardiolipin, the major phospholipid of mitochondrial inner membrane, is introduced as the main component in biomimetic liposomal formulation. With the help of cardiolipin, Cyt C is sufficiently loaded in liposome based on electrostatic and hydrophobic interaction with cardiolipin. Lonidamine (LND) is added in hydrophobic phase of liposome to modulate the metabolic activity within cancer cells and sensitize the cells to Cyt C‐induced apoptosis. The results suggest that LND reduces ATP level and creates favorable environment for Cyt C induced apoptosome assembly, exhibiting higher apoptosis level and anti‐tumor efficacy in vitro and in vivo. The conjugation of a tumor‐homing peptide, LinTT1, on the nanovesicle, increases the efficacy due to enhanced tumor accumulation. Overall, this biomimetic lipid nanocarrier proves to be an efficient delivery system with great potential of pro‐apoptosis cancer therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call