Abstract

The Piper betle leaf essential oil have antimicrobial activity to Candida albicans (Wirna, 2006). However, the essential oil is unstable to high temperature, light, and oxygen. One approach to improve the stability and facilitate in developing various dosage forms is by preparing the essential oil in complex inclusion using β-cyclodextrin (Szejtli, 1989). The aim of the present study was to investigate the effect of inclusion complex formation of the Piper betle leaf essential oil in b-cyclodextrin formulated to polyethylene glicol ointment to antifungal candida albicans activity. The essential oil of Piper betle leaf was isolated by destillation. The inclusion complex of the essential oil - β-cyclodextrin was prepared by coprecipitation of the essential oil : β- cyclodextrin 1:1 (w/w). The inclusion complex formation was studied with thin layer chromatography (TLC) and powder X-ray diffraction (XRD). In the TLC, sillica gel was used as solid phase, whereas toluen-ethyl acetate (7:3) and methanol-water (7:3) was used as mobile phase, then the Rf value of the essential oil and inclusion complex was compared. The XRD pattern of β-cyclodextrin, physical mixtures and inclusion complex was compared, too. Then, the polyethylene glicol ointment of the essential oil and inclusion complex was prepared. The physical properties and antifungal activity was compared. The TLC result showed that the essential oil of Piper betle leaf with methanol-water (7:3) as mobile phase had Rf 0,69 and the inclusion complex had Rf 0,81. With toluen-ethyl acetate (7:3), Rf of the essential oil were 0,63; 0,73; 0,85, whereas the inclusion complex were 0,66; 0,80, and 0,91. The powder XRD analysis showed that the pattern of β-cyclodextrin, physical mixture and inclusion complex were different. The differences of Rf from TLC and XRD patterns were showed that the Piper betle leaf essential oil was complexed with β cyclodextrin. The physical properties studies showed that the homogenity of both formulation was good. The inclusion complex ointment had spreading property, adhering property and antifungal activity which better than the essential oil ointment. The potency of antifungal activity of the inclusion complex of the essential oil - β-cyclodextrin was not significant different than miconazol ointment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.